NIH Training Grant Program in Molecular and Applied Nutrition

Postdoctoral Positions Available

The University of Wisconsin-Madison has postdoctoral (PhD, MD) training positions in the following research focus areas: i) Aging; ii) Cell Signaling, Growth and Development; iii) Fat Soluble Vitamins; iv) Metabolism and Metabolic Disease; and v) Minerals. Detailed information concerning the research interests of our 26 faculty trainers can be found at http://www.nutrisci.wisc.edu/NIH/index.html or by contacting Rick Eisenstein, Program Director (eisenstein@nutrisci.wisc.edu).

UNIVERSITY OF WISCONSIN-MADISON

Postdoctoral applicants should send a cover letter, curriculum vitae and 3 letters of reference to Rick Eisenstein, Professor, Dept. of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706 (email: eisenstein@nutrisci.wisc.edu) by Friday November 18, 2016. Applicants may indicate which faculty trainers they are most interested in or which of the five research focus groups fits best with the research interests.
Postdoctoral Positions at the University of Wisconsin available in the Molecular and Applied Nutrition Training Program (MANTP). UW-Madison has postdoctoral (Ph.D. or M.D.) training positions in molecular and applied nutrition in the following five research focus areas: Aging; Cell Signaling, Growth and Development; Fat Soluble Vitamins; Metabolism and Metabolic Diseases; and Mineral Metabolism. This NIH-funded Nutrition Training Program, established in 1993, is built upon a tradition of outstanding nutrition research and disciplinary breadth that provides a unique educational opportunity for trainees. The MANTP has enhanced the training of postdoctoral researchers who intend to become leaders in nutrition-related biomedical research. Former trainees are professors at leading universities and senior researchers at major companies. Trainees have performed diverse research projects ranging from genetic studies of humans as well as model organisms aimed at understanding disease etiology, nutrient function, metabolism and regulation to nutritional studies in humans aimed at elucidating how and in animal models of human disease. Support is available for up to two years with a third year possible on competitive renewal of the NIH T32 grant.

MANTP faculty trainers: Faculty from nine departments in the College of Agricultural and Life Sciences or the School of Medicine and Public Health include: R. Anderson, A. Attie, M. Clagett-Dame, J. Denu, D. Eide, R. Eisenstein, J. Gern, G. Groblewski, K. Kudsk, H.J. Lai, J. Mares, J. Mezrich, D. Ney, P. Nichol, J. Ntambi, D. Pagliarini, T. Prolla, S. Tanumihardjo, C-L. E. Yen. Additional information about MANTP including research interests of faculty can be found on the next page of this flyer or at: http://nutrisci.wisc.edu/nih-training-grant/

How to apply: Applicants should send a cover letter describing their research background, their future career interests and which MANTP faculty trainer(s) and research focus area(s) they are interested, a curriculum vitae and three letters of reference to: Rick Eisenstein Ph.D., Dept. of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706. Email contact: eisenste@nutrisci.wisc.edu. Deadline: November 18, 2016 or until positions are filled. The candidate must be able to start before July 1, 2017. UW-Madison is an equal opportunity/affirmative action employer. Per NIH policy positions are open only to U.S. citizens and non-citizen nationals.
Rozalyn Anderson, PhD (Asst. Prof. of Medicine). Metabolism of aging and delayed of aging by caloric restriction.

Alan Attie PhD (Prof. of Biochemistry) studies the genetics and genomics of obesity-induced type 2 diabetes.

Margaret Clagett-Dame PhD (Prof. of Biochemistry) studies the mechanism of action of the fat-soluble vitamins A and D and the therapeutic applications of vitamin analogs.

John Denu PhD (Prof. of Biomolecular Chemistry) investigates the biological function of acetylation and other reversible protein modifications modulating signal transduction, gene activation and intermediary metabolism.

Marc Drezner MD (Prof. of Medicine) studies the mechanisms underlying the pathogenesis and treatment of human vitamin D resistant disorders, focusing on miRNA regulation of phosphate homeostasis and bone mineralization.

David Eide PhD (Prof of Nutritional Sciences) studies the mechanism of zinc uptake and homeostasis using the yeast Saccharomyces cerevisiae as a model for understanding these processes in humans.

Rick Eisenstein PhD (Prof. of Nutritional Sciences) studies how erythropoiesis and iron metabolism are controlled and coordinated including how dysregulation of molecular sensors of iron and oxygen causes disease.

James Gern M.D. (Prof. of Medicine) studies how respiratory viruses and other environmental exposures including vitamin D metabolism and food allergies affect the onset of allergic diseases and asthma.

Guy Groblewski PhD (Prof. of Nutritional Sciences) studies the molecular mechanisms of membrane trafficking events in digestive epithelial cells of the pancreas and how their dysregulation leads to pancreatitis and pancreatic cancer.

Karen Hansen, MD (Assoc. Prof. of Medicine) does human studies of relationships between vitamin D status & Ca absorption, bone mineral density and muscle fitness. Dual isotope absorption studies of factors affecting Ca and Mg.

Colleen Hayes, PhD (Prof. of Biochemistry) studies mechanisms by which the hormones calcitriol and estradiol regulates the animal model of the autoimmune, neurodegenerative disease multiple sclerosis (MS).

Michelle Kimple, PhD (Asst. Prof. of Medicine) is elucidating how dysfunctional G protein-coupled receptor signaling pathways contribute to the pathogenesis of type 1 and type 2 diabetes and using this information to improve treatments.

Kenneth Kudsk MD (Prof of Surgery) investigates how enteral feeding reduces infectious complications in critically ill & critically injured patients including the role of enteral feeding in maintaining innate & adaptive mucosal immunity.

HuiChuan Lai PhD (Prof. of Nutritional Sciences) studies how nutrition affects the onset and progression of pediatric chronic diseases including cystic fibrosis (CF), asthma, and obesity.

Julie Mares PhD (Prof of Ophthal./Visual Sci.) conducts epidemiological studies on retinal biomarkers for carotenoids and other nutritional factors preserving vision and cognitive function & serve as markers of persons at risk for decline.

Joshua Mezrich MD (Assoc. Prof of Surgery) transplant tolerance and how environmental exposures including diet alter the immune system.

Denise Ney PhD (Prof. Nutritional Sciences) studies the nutritional management and etiology of skeletal fragility in phenylketonuria using genetic mouse models and human subjects.

Peter Nichol MD, PhD (Assoc. Prof. of Medicine) focuses on intestinal development with a goal of developing therapies that will enable growth of the gut in patients with intestinal failure.

James Ntambi PhD (Prof. of Biochemistry and Nutritional Sciences) studies how lipid metabolism impacts obesity and obesity-related diseases.

David Pagliarini PhD (Morgridge Institute Metabolism Leader and Assoc. Prof. of Biochemistry) studies mitochondrial dysfunction in obesity, obesity-induced type II diabetes and other diseases using large scale MS-based proteomics & biochemical and molecular approaches.

Brian Parks PhD (Asst. Prof. of Nutritional Sciences) studies how interactions between genetics and diet contribute to obesity and diabetes.

Tomas Prolla PhD (Prof. of Genetics) studies focused on understanding the molecular basis of the aging process and common age-related human diseases through the use of large-scale gene expression analysis.

Sherry Tanumihardjo PhD (Prof. of Nutritional Sciences) studies methods for vitamin A assessment and carotenoid bioavailability emphasizing provitamin A carotenoids in staple crops to improve vitamin A status world-wide.

Eric Yen PhD (Assoc. Prof. of Nutritional Sciences) studies lipid metabolism and energy balance, focusing on mechanisms that may account for differential responses to diet.